A Hybrid Intrusion Detection System: Integrating Hybrid Feature Selection Approach with Heterogeneous Ensemble of Intelligent Classifiers
نویسندگان
چکیده
This paper proposes Hybrid Feature Selection Approach – Heterogeneous Ensemble of Intelligent Classifiers (HyFSA-HEIC) for intelligent lightweight network intrusion detection system (NIDS). The purpose is to classify for anomaly from the incoming traffic. This system hierarchically integrates HyFSA and HEIC. The HyFSA will obtain the optimal number of features and then HEIC is built using these optimal features. HyFSA helps to decrease the computation time of the system and make it lightweight to work in real time. The aim of HEIC is to obtain accurate and robust classifier and enhance overall performance of the system. The results demonstrate that proposed system outperforms other ensemble and single classifier methods used in this paper. It has true positive rate (99.9%), accuracy (99.91%), precision (99.9%), receiver operating characteristics (99.9%), low false positive rate (0.1%) and lower root mean square error rate (3.06%) with a minimum number of selected 6 features. It also reduces time to build and time to test the model by 50.79% and 55.30% respectively on reduced features set. The results evince that detection rate, accuracy and precision of the system is increased by incorporating feature selection approach with heterogeneous ensemble of intelligent classifiers and significantly reduce the computation time.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملHFSTE: Hybrid Feature Selections and Tree-Based Classifiers Ensemble for Intrusion Detection System
Anomaly detection is one approach in intrusion detection systems (IDSs) which aims at capturing any deviation from the profiles of normal network activities. However, it suffers from high false alarm rate since it has impediment to distinguish the boundaries between normal and attack profiles. In this paper, we propose an effective anomaly detection approach by hybridizing three techniques, i.e...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Network Security
دوره 20 شماره
صفحات -
تاریخ انتشار 2018